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Abstract

Essential to the framework of Newtonian theory are the concepts of
absolute time, i.e. of a time that is the same for all observers, and of
Euclidean spatial geometry. We represent an argument that the gravi-
tational equivalence principle can be meaningfully understood from this
Newtonian perspective and integrated into a theory of gravitation that
regards the gravitational force as indistinguishable from the so-called in-
ertial forces, with this equivalence mathematically described in a given
frame of reference by an affine connection on the spacetime, as originally
done by Élie Cartan. This model of gravitation serves as a near-field, low
velocity limit of the general theory of relativity. In addition, presenting
this non-flat Newtonian spacetime is pedagogically valuable, as it gives
learners of the general theory an introduction to necessary mathematical
and geometric ideas independent of the initial conceptual difficulty of the
full general theory of relativity. We also show that once we adopt a ge-
ometrized view of gravitation informed by the equivalence principle, we
can predict the existence of magnetic-type gravitational interactions ow-
ing to the dragging of inertial frames in frames of reference in which any
of the matter/energy content has a non-zero three-velocity, expounding
upon Stachel 2006. We describe both the magnetic-type and electric-type
inertiogravitational fields in the generalized case of a sphere of mass M and
radius R rotating with angular velocity ω with respect to a non-rotating
frame. We use this near-field, low-velocity model to predict that the
amount of rotation the gryoscope in Stanford University/NASA’s Grav-
ity Probe B should be 24.9 mas/year in the direction opposite Earth’s
rotation.
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1 Introduction - the Inertial, Motional Tenden-
cies of Matter

Premised on the experimentally demonstrated equivalence of inertial and grav-
itational mass, the gravitational equivalence principle is a piece of scientific
understanding that would have been conceptually meaningful even before the
advent of the special theory of relativity. For once it is understood that locally,
the effects of gravitation and those of being in an accelerated reference frame
are indistinguishable, we must assign these two seemingly disparate processes
the same physical significance.

Specifically, in traditional Newtonian theory, for a given gravitational field
~g and test particle,

mI~a = mG~g

, where ~a is the 3-acceleration of a test particle w.r.t. the center of mass of
the matter giving rise to the gravitational field ~g, mI is a determiner of the
3-acceleration of test particle in response to a given external force, i.e. the test
particle’s inertial mass, and mG is the gravitational mass or, in analogy with
electromagnetism, gravitational “charge” of the test particle that determines
the extent of the gravitational force acting on the test particle. Experimentally
it has been shown to a high degree of precision that ~a = ~g and thus mI = mG

for every test particle.
This forces us to reconceptualize the motional tendencies of matter as in-

fluenced by the force of gravity, in Newtonian theory, as merely the inertial
motional tendencies of matter with respect to so-called inertial frames of refer-
ence in Newtonian theory. To be in a frame in which, locally, there is a so-called
gravitational force must be reinterpreted as being in a frame which has a par-
ticular non-zero four-acceleration. In particular, we should require of such a
theory that for a given point in the spacetime, the four-acceleration of a frame
that has a zero 3-acceleration with respect to the center of mass of the source
matter corresponds to what is described in traditional Newtonian theory as the
gravitationally induced 3-acceleration of test particles w.r.t. the center of mass
of the source matter.

First, to understand how we can even begin to formulate this statement
mathematically, we must make a slight abstract change to how we usually think
about time, space, and motion. In Newtonian mechanics, it is taken to be
intuitive that time progresses at the same rate for all observers, and things move
through space, and this motion through space is independent of the passage of
time. However, we can, with equal validity, say that things occupy various
positions in space and they occupy various ’positions’ in time, i.e. different
times. Although our concept of ’motion’ is logically analzyable into a succession
of places as a function of time, we can modify this concept and say that, in a
different way, objects ’move’ through the spacetime, occupying, throughout their
histories, different places and different times. The collection of different places
and different times an object is at throughout its history is called that object’s
world line. The abstract part of this definition is that it is a timeless statement
that characterizes the object’s motion, i.e. without reference to past, present,
or future – all statements of the form “the object was at such and such a place
then” is contained in the collection of the spaces and times that object occupies
throughout its existence. Instead of saying the object “was at such and such a
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place then and will be at such and such a place later,” we simply say that the
object exists in a certain subset of the spacetime, this subset being the object’s
world line. We can then make the statement that the object moves through
space and moves through time by introducing a parameter that corresponds to
different points in the worldline as it increases, i.e. some function Xµ(λ) that
gives the spatiotemporal situation of the object as a function of the parameter
λ, where X0 = T = ct is the time of the object multiplied by some spacetime
conversion factor to make all four coordinates of the object commensurate, and
Xi, i = 1, 2, 3 are the three spatial coordinate positions of the object. The
statement that the object moves through space and through time can then be
made mathematically that the object has a four-velocity Wµ := dXµ

dλ .
Such considerations do not require us to impose any 4-metric structure on

the spacetime – this is only demanded by the need to construct an invariant
spacetime interval under Lorentz transformations as a means of preserving the
fundamental velocity of special relativity. This is itself a fundamentally different
consideration. Thus, we are free to conceptually reformulate Newtonian theory
with the above explicated insights. The way we will do this mathematically is
the imposition of non-flat affine strucuture on a spacetime manifold. A space-
time manifold is a collection of spacetime points, i.e. times and places. In order
to clarify how we can describe a manifold, we must first clarify what is meant by
an affine space. A global affine space is an n-dimensional space that maintains
all postulates of Euclidian geometry without any metric and hence no concept
of length or angles between vectors. Formally, if we consider an n-dimensional
vector space ~U , and a n-dimensional set of points A, A is an affine space if for
every element ~v and ~w of ~U and for every element p of A, then:

p+ ~v ∈ A

(p+ ~v) + ~w = p+ (~v + ~w)

p+ ~v = p↔ ~v = ~0

and for all p,q ∈ A∃~v such that ~v = p− q
An affine transformation A→ A’ preserves these properties, i.e. the coordi-

nates of the new points in A’, Xγ′
, are related to the coordinates of the points

in the original A, Xγ , via

Xγ′
= ∂Xγ

′

∂Xγ X
γ + Cγ

where ∂Xγ
′

∂Xγ defines the transformation matrix, the Xγ′
are linear in the Xγ

and the Cγ is a translation of the points. For our purposes, we will restrict
ourselves to unimodular transformations, i.e. those which preserve n-volumes

(4-volumes in a spacetime), in which ∂Xγ
′

∂Xγ = 1
In a global affine space, parallelism is a well-defined concept for any two

vectors in the space. However, the most general description of a space, or, in
our case, a spacetime, comes from the idea of a manifold, which is more general
than a global affine space. What is particularly important for our case is that
distant parallelism is not neccessarily a well-defined concept within the manifold.
We can, however, describe vectors at a given point of the manifold in terms of
the tangent space of that point of that manifold. A tangent space is the space
spanned by the collectivity of the tangent vectors to any possible curve through
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that point. We can then take this locally defined tangent space to be centered
affine, i.e. an affine space that has a fixed origin, in order to ensure that the
space remains a description of the tangent space at the particular point of the
manifold at which it is defined. This eliminates translations from the allowable
coordinate transformations, i.e. we only considerXγ′

= ∂Xγ
′

∂Xγ X
γ with ∂Xγ

′

∂Xγ = 1.
In order to describe the relations of spacetime points in our manifold, we need
to be able to connect neighboring tangent spaces. This we will do shortly.

We first turn to further characterize what we should require of our man-
ifold. In order for this spacetime manifold to be Newtonian, we demand as
conditions on the manifold that rate of any observer’s passage through the 0th
dimension, i.e. time, is the same, and that the 3-geometry of hypersurfaces that
are transvected by the 0th dimension is affine flat, which is the same as to say
Euclidean (although non-metrically).

We must now better define what we mean by an observer, which is closely
tied to the idea of a frame of reference: an observer is at a particular point
in a frame of reference. We can define a frame of reference globally, by either
the spacetime coordinatization of all points in the manifold or with a field of
tetrad vectors, i.e. a set of 4 vectors at every point of the manifold, which
are linearly independent. We can locally define a frame of reference at a point
by a coordinatization of the tangent space of the manifold or specification of a
tetrad at that point, or of the tangent spaces at all points on a world-line, i.e.
a curve through the spacetime. An observer can be described by such a curve
through the spacetime. We are also free to define a local frame of reference by
specifying either a tetrad at every point or coordinatization of the tangent space
at every point of 2-dimensional hypersurfaces or 3-dimensional hypersurfaces of
the manifold. In this sense, a frame of reference is local if it is not specified over
the entirety of the spacetime manifold. Following our definition of reference
frames in terms of tangent spaces or tetrad fields, we can also define a global
frame of reference by a coordinatization of the tangent spaces of every point of
the manifold. See Figures 1 and 2. Such a spacetime structure would contain
the inertial frames of reference in the traditionally Newtonian sense. That is,
frames, defined either locally or globally, in which there is no absolute rotation
and zero three-acceleration w.r.t. the center of mass of the source matter.

Formally, we can introduce a four-dimensional manifold M that is topo-
logically homeomorphic to R4, and a foliation of M given by a differentiable
function T (X), where T (X) represents the absolute time in Newtonian theory.
We should require that T is commensurate with the 3 coordinates X, which are
themselves taken to have spatial dimensions, and so relate it to the ordinary
absolute Newtonian time t via T = ct, where for the moment the constant c has

units of [length]
[time] and merely serves as a conversion factor to make T spatially

commensurate. There is no need at this point to interpret it physically. The
level surfaces T = const. define the spatial hyper-surfaces of (global) simultane-
ity. If we introduce the covector Tµ = ∂µT , we can distinguish a 4-vector Bµ

as space-like if BµTµ = 0, future time-like if BµTµ > 0, and past time-like if
BµTµ < 0

If we are to allow the tangent spaces of the manifold to differ, then the
ordinary concept of a directional derivative ∂ν = ∂

∂Xν is no longer meaningful,
as for some vector Bµ at a point in the manifold, if we consider a coordinate
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transformation Xγ′
= ∂Xγ

′

∂Xγ X
γ then ∂νB

µ is related to ∂ν′Bµ
′

via

∂ν′Bµ
′

= ∂νB
µ ∂X

µ′

∂Xµ

∂Xν

∂Xν′ + (
∂2Xµ′

∂Xµ∂Xν′ )Bµ

, and ∂2Xµ
′

∂Xµ∂Xν′
is in general non-zero if the tangent spaces differ, and thus ∂νB

µ

is not a tensor – in simpler terms, it is not enough to evaluate the change in
the components of a vector in a given direction, as the very notion of what it
means to be in a given direction changes from point to point in the manifold.
We need to find an operation analogous to ∂ν that accounts for differences in
neighboring tangent spaces. Mathematically, we must search for an expression
that is tensorial and a natural extension of ∂ν . For readers unfamiliar with

what it means for a quantity to be tensorial, it means that the ∂2Xµ
′

∂Xµ∂Xν′
is not

present in the expression for how the geometric object considered (∂νB
µ above

– we are soon to find an adequate replacement) is described under a new system
of coordinates. This is desirable because this term is a relic of the fact that the
tangent spaces differ from point to point in the manifold.

It is easy to show that we can introduce an operation DνB
µ, called the

covariant derivative, which is tensorial and related to ∂νB
µ by a geometric

object Γµκν via DνB
µ = ∂νB

µ + ΓµκνB
κ, where Γµκν is required to have the

transformation property of

Γµ
′

κ′ν′ = Γµκν
∂Xν

∂Xν′

∂Xκ

∂Xκ′

∂Xµ′

∂Xµ
− (

∂2Xµ′

∂Xκ∂Xν
)(
∂Xκ′

∂Xκ
)(
∂Xν′

∂Xν
)

Conceptually, Γµκν can be thought of as a geometric object connecting neighor-
ing tangent spaces of the manifold, and so is called an affine connection. It may
be helpful for understanding this object to think of it in terms of autoparallel
transport – a vector in a manifold that ‘moves itself’ to the neighboring tangent
(affine) space of the manifold. In the case of the surface of a sphere, perhaps the
easiest to visualize non-flat manifold, a given vector autoparallel transporting
itself defines the curve of a great circle on the sphere. If we consider a coordi-
natization in which a vector on the surface of the sphere takes itself around the
so-called equator of the sphere (ϕ = 0 to ϕ = 2π), then the components of this
vector will be constant – 0 in the θ (longitudinal) direction and some non-zero
constant vϕ in the ϕ (latitudinal) direction. However, if we consider the same
great circle after a change of coordinate system that rotates the so-called north
pole of the sphere, then neither the θ nor the ϕ components of the autoparallel
transported vector defining this curve will be constant, but the curve will still
be just as much an autoparallel in the space. Thus, constancy of the coordinate
components of a tangent vector is not a sufficent condition for defining an au-
toparallel in non-flat manifold. The introduction of Γµκν makes the above two
descriptions of the same autoparallel curve consistent, as it offers a description
of parallel vectors from point to point in the manifold, i.e. it connects tangent
spaces of the space, in a way that is independent of the coordinatization of that
space. See Figure 3 for a visual demonstration of this argument.

In a spacetime manifold, then, the equations of motion that are invariant for
all spacetime coordinatizations, i.e. all frames of reference, of a four-force-free
test-particle with a four-velocity Wκ := dXκ

dλ , where Xκ(λ) are now the coor-
dinates of the spacetime curve the particle follows, rather than the coordinates

5



more generally, are given by the autoparallel condition:

W νDνW
κ = 0→

d2Xκ

dλ2
+ Γκνµ

dXµ

dλ

dXν

dλ
= 0 (1)

,where λ is the preferred parameter of the curve. Conceptually, this states that
W ν parallel transports itself through the spacetime, and moves along this curve
as we increase λ.

This expression has been traditionally called the geodesic equation. How-
ever, its conceptual introduction does not require any metric structure on the
manifold, but rather only the idea of autoparallel transport in an affine space.
Thus, it is most properly called the autoparallel equation. More generally,
W νDνW

κ = Aκ is the four-acceleration of a curve.

1.1 Newton’s Three Laws

Newton’s First law as he originally concieved it can now be thought of as the
autoparallel condition in a globally flat affine spacetime, in which all Γµκν = 0

and d2Xκ

dλ2 = 0 for some spacetime coordinate system Xµ (here referring to the
coordinates themselves and not the coordinates of a curve), and additionally
for every choice of coordinates related to this coordinate system in such a way

that ( ∂2Xµ
′

∂Xκ∂Xν )(∂X
κ′

∂Xκ )(∂X
ν′

∂Xν ) = 0. Physically, we can understand this as say-
ing that the first coordinate system corresponds to some frame of reference in
which Newton’s First Law holds, i.e. some inertial frame of reference, and every
coordinate system which is not accelerated w.r.t. this coordinate system, also

corresponds to an inertial frame of reference in which all d2Xκ

dλ2 = 0. See Figure
2. In this sense, Newton’s First Law, at bottom, defines the frames of refer-
ence in which Newton’s Second Law is valid. In geometrical language, these
are the set of spacetime coordinate systems naturally adapted to the affine-flat
structure of the spacetime. Newton’s Second Law is then that the deviation of
a particle’s worldline from autoparallel transport in an affine-flat spacetime is
proportional to the net force acting upon that particle and inversely propor-
tional to the particle’s mass: a = F

m . See Figure 3. Since the deviation from
affine-flat autoparallel transport is the same for all particles being acted upon
by the gravitational field, it is simpler to reconceptualize the deviation from
affine-flat autoparallel transport as simply the new autoparallel transport of the
spacetime. Newton’s Third Law, combined with his first two, is then that the
law of affine-flat autoparallel transport, i.e. momentum conservation, holds for
the center of mass of a closed system. When the autoparallels are modified by
gravitating matter, the center of mass of a closed system still follows autoparallel
spacetime curves, although in curved spacetime, but a component of Newton’s
Third Law is reconceptualized: the recipricol nature of gravitational interac-
tions then becomes simply that everything modifies the spacetime structure in
exactly the same fashion (to be shown mathematically shortly), rather than two
gravitating particles mutually pulling each other from autoparallel transport in
an affine flat spacetime.

6



1.2 Non-Flat Manifolds

In the case where the manifold is non-flat, we are always free to pick a frame
of reference along a test particle’s world-line which is co-accelerating with the

test particle, in which case, locally d2Xκ

dλ2 = 0 and thereby all Γκνµ = 0. Indeed,
as we shall see, this defines the only frame of reference which resembles the
concept of a Newtonian inertial frame – it differs in that there still must be
an observed relative acceleration of test-particles and the center of mass of the
source matter, and that in the infinitesimal neighborhood of any point for which
we have locally considered this co-accelerating frame, there must exist so-called
tidal forces, a result of the non-zero curvature of the spacetime and described
in geometrical terms by the equation of autoparallel deviation, which will be
elaborated upon in coming sections. More generally, the autoparallel condition,
as given by equation (1), is always true, but it is not always true that Γκνµ = 0

and d2Xκ

dλ2 = 0. That is, one can, by a suitable transformation of coordinates,
change what was attributed to the gravitational force in one frame as being
attributed as merely inertia in transformed frame. While in Newtonian theory,
it is posited that there is an underlying inertial structure, and a gravitational
field deflecting particles from what would be otherwise inertial tendencies, the
gravitational equivalence principle informs us that these are one and the same
structure on the spacetime. Instead of being characterized independently by
inertial structure and a gravitational field, there is inertiogravitational struc-
ture, or an inertiogravitational field if you rather, on the spacetime, definable
rigorously in terms of the affine connection.

Now we introduce a triad of spatial basis vector fields eµ(i), with a dual co-

basis e
(i)
µ defined by eν(j)e

(i)
ν = δ

(i)
(j) and eν(i)e

(i)
µ = δνµ and that span the tangent

space and cotagent space at each point of each leaf of the foliation. We then de-
fine a time-like vector field that transvects the spatial hypersurfaces and thereby
defines a global frame of reference, eµ(0), with corresponding co-basis vector field

e
(0)
µ := ∂µT such that eν(0)e

(0)
ν = 1. This completes duality conditions between

the basis and co-basis, i.e. eν(β)e
(α)
ν = δ

(α)
(β) and eν(α)e

(α)
µ = δνµ Note that the (i)

or (j) merely indicates enumeration from 1 to 3, while the (α) or (β) indicates
enumeration from 0 to 3.

We can then project Wκ onto this tetrad, Wκ = W (α)eκ(α), with W (0) = 1

and W (i) = w(i)

c , i.e. the passage of time is the same for the test-particle as it
is for the eν(0) which defines the frame of reference, and the test-particle has 3-

velocity components of w(i)

c along spatial contravector eµ(i). Making the scalars

W (α) unitless ensures that all components of Wκ have spatial units, as the
tetrad has spatial units. The autoparallel condition then becomes

(W (α)eν(α))Dν(W (β)eκ(β)) = 0→

W (α)eν(α)(DνW
(β))eκ(β) + eν(α)Dνe

κ
(β)W

(α)W (β) = 0

If we contract this with e
(γ)
κ we have

W (α)eν(α)(DνW
(β))eκ(β)e

(γ)
κ + e(γ)

κ eν(α)Dνe
κ
(β)W

(α)W (β) = 0
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or, defining D
dλ := W νDν and the tetrad components of the affine connection,

or t.c.c. for short, as Γ
(γ)
(α)(β) := e

(γ)
κ eν(α)Dνe

κ
(β)(

DW

dλ

)(γ)

+ Γ
(γ)
(α)(β)W

(α)W (β) = 0 (2)

Conceptually, the first term is the change in four-velocity of the test particle
w.r.t. the frame defined by the tetrad, due to W ν parallel transporting itself,

projected upon the co-basis tetrad e
(γ)
κ , hence enclosing the whole first term

associated with index (γ) in parentheses. Numerically, however, owing to the
imposed duality of the basis, it is equal to the change in scalar W (γ) due to W ν

parallel transporting itself. Physically the four scalars
(
DW
dλ

)(γ)
describe, in the

frame of reference defined by the tetrad, the 3-acceleration of the four-force-free
test particle as well as its change w.r.t. the affine parameter of the temporal
coordinate of the test-particle’s four-velocity, the latter of which should be zero
by our compatibility conditions.

This approach has the advantage that the set of 64 scalars Γ
(γ)
(α)(β) are locally

meaningful for a given basis: the result of any measurement is a scalar, and so
describing the spacetime structure by a set of sixty-four scalars dependent on the
choice of directions (both spatial and temporal) considered for an experiment
makes them meaningful as scalars related to the result of a measurement.

We now turn to the compatibility conditions between the connection and the
chronometry (i.e. absolute time) and the spatial basis vectors, which require
Euclidean 3-geometry of the spatial hypersurfaces, to see which t.c.c. are elim-
inated a priori. To require that absolute time holds for all frames of reference

is equivalent to demanding that DνTµ = 0↔ Dνe
(0)
µ = 0, i.e. the magnitude of

the covector defining the temporal separation of the spatial hypersurfaces does
not change at any point of the manifold in the direction of any of the vectors.

Now we show that

Γ
(0)
(α)(β) = e(0)

κ eν(α)Dνe
κ
(β) = eν(α)Dν(e(0)

κ eκ(β))−e
κ
(β)e

ν
(α)Dνe

(0)
κ = eν(α)Dν(δ

(0)
(β))−e

κ
(β)e

ν
(α)Dνe

(0)
κ = 0

by the duality conditions of the basis and the compatibility condition requiring
an absolute time.

We now impose the Euclidicity of the 3-spaces of the spatial hypersurfaces
by demanding that parallel transport constrained to such a hypersurface be
independent of the space-like path. Formally we can thus require

eν(a)Dνe
κ
(b) = 0

from which it follows that Γ
(γ)
(a)(b) = 0.

Thus requiring absolute Newtonian time and flat Euclidean 3-space only

allows for non-zero Γ
(a)
(0)(0), Γ

(a)
(0)(b), and Γ

(a)
(b)(0) and demands that all others be

zero.
Because we require that the spatial triad remain dual, we require that

e(a)
κ Dνe

κ
(b) = −e(b)

κ Dνe
κ
(a)

and thus

e(a)
κ eν(0)Dνe

κ
(b) = −e(b)

κ eν(0)Dνe
κ
(a) →
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Γ
(a)
(0)(b) = −Γ

(b)
(0)(a)

With our compatibility conditions imposed on the t.c.c., if we now look at
the (0) component of equation (2), we have(

DW

dλ

)(0)

+ Γ
(0)
(α)(β)W

(α)W (β) = 0

thus implying (
DW

dλ

)(0)

= 0

Thus the change in the passage of time for the test particle via parallel
transport by its own W ν defined in reference to the preferred parameter λ is
always zero. In more mathematical terms, λ agrees with the absolute time T
up to a linear rescaling and choice of origin. For simplicity, therefore, we choose
to identify the two, thereby now defining W ν := dXν

dT . From the fact that all

Γ
(0)
(α)(β) = 0, it follows that all Γ0

µν = 0 and thus, from equation (1), d2X0

dλ2 = 0.

Thus, we see that in the same way that we are free to identify the preferred
parameter λ with absolute Newtonian time T, we are free to identify the 0th
coordinate in the spacetime manifold as X0 = λ = T .

The equations of four-force-free motion now become(
DW

dT

)(m)

+ Γ
(m)
(0)(0) + Γ

(m)
(0)(n)W

(n) + Γ
(m)
(n)(0)W

(n) = 0

,
or, w.r.t. traditional absolute time t

1

c2

(
Dw

dt

)(m)

+
1

c2
Γ

(m)
(t)(t) +

1

c
Γ

(m)
(t)(n)

w(n)

c
+

1

c
Γ

(m)
(n)(t)

w(n)

c
= 0

after cancelling out the common 1
c2 term we have(

Dw

dt

)(m)

+ Γ
(m)
(t)(t) + Γ

(m)
(t)(n)w

(n) + Γ
(m)
(n)(t)w

(n) = 0 (3)

As we will see, the second term corresponds to the Newtonian electric-type
gravitational force, while the third and fourth, 3-velocity dependent terms corre-

spond to a magnetic-type gravitational interaction. The Γ
(m)
(0)(n) and the Γ

(m)
(n)(0)

are related by the relation between the t.c.c., the torsion tensor, and the an-
holonomic object given by Papapetrou-Stachel 1978. In the case of a torsionless
connection, this reduces to

Γ
(γ)
[(α)(β)] = −Ω

(γ)
(α)(β) (4)

where

Ω
(γ)
(α)(β) =

1

2
eν(α)e

µ
(β)(e

(γ)
µ,ν − e(γ)

ν,µ)

is the anholonomic object of the basis.
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Note that, if we consider a holonomic basis, with all Ω
(γ)
(α)(β) = 0, then

equation (4) tells us

Γ
(m)
(0)(n) = Γ

(m)
(n)(0)

Since our compatibility conditons have imposed that

Γ
(m)
(0)(n) = −Γ

(n)
(0)(m)

,
it follows in an holonomic spacetime that

Γ
(m)
(n)(0) = −Γ

(n)
(m)(0)

.
Visually, it is easy to see that such a change is a rotation of the spatial triads

eκ(m) and eκ(n), along with the corresponding dual covectors e
(m)
κ and e

(n)
κ . See

Figure 6. This change in spatial triad occurs in the direction of the manifold

defined by eν(0, which goes from hypersurface to hypersurface. Thus the Γ
(m)
(n)(0)

and Γ
(m)
(0)(n) represent a rotation rate in a holonomic spacetime.

We can now describe the Coriolis and centrifugal forces quite naturally from
this geometric description of the spacetime. We begin with a flat affine spacetime

with all Γ
(γ)
(α)(β) = 0, and then transform to a frame of reference rotating with

constant ~ω = ωeν(3). Our rotating frame of reference is related to the first via

e
′ν
(0) = eν(0) +

~ω

c
× ~r = eν(0) +

ωx(1)

c
eν(2) −

ωx(2)

c
eν(1)

, where ~r = x(m)eν(m) and eν(m) = δν(m),

e
′ν
(1) = cos

ωT

c
eν(1) + sin

ωT

c
eν(2)

e
′ν
(2) = −sinωT

c
eν(1) + cos

ωT

c
eν(2)

e
′ν
(3) = eν(3)

e
′(1)
ν = cos

ωT

c
e(1)
ν + sin

ωT

c
e(2)
ν

e
′(2)
ν = −sinωT

c
e(1)
ν + cos

ωT

c
e(2)
ν

e
′(3)
ν = e(3)

ν

.
Recalling that we have chosen to identify x0 and T , it follows that

Γ
′(1)
(0)(0) = −ω

2

c2
(x(1)cos

ωT

c
+ x(2)sin

ωT

c
)

Γ
′(2)
(0)(0) = −ω

2

c2
(−x(1)sin

ωT

c
+ x(2)cos

ωT

c
)→

10



Γ
′(1)
(t)(t) = −ω2(x(1)cosωt+ x(2)sinωt) = −ω2x

′(1)

Γ
′(2)
(t)(t) = −ω2(−x(1)sinωt+ x(2)cosωt) = −ω2x

′(2)

i.e. the Γ
′(1)
(t)(t) and Γ

′(2)
(t)(t) are the (negative) of the centrifugal acceleration,

~ac = ω2(xx̂+ yŷ), projected upon the rotating basis of vectors.

We also have

Γ
′(1)
(0)(2) = Γ

′(1)
(2)(0) =

ω

c
↔ Γ

′(1)
(t)(2) = Γ

′(1)
(2)(t) = ω

Γ
′(2)
(0)(1) = Γ

′(2)
(1)(0) = −ω

c
↔ Γ

′(2)
(t)(1) = Γ

′(2)
(1)(t) = −ω

11



Looking at the equations of motion for a four-force free test particle in this
frame of reference,

D2x
′(1)

dt2
= −Γ

(1)
(t)(t) − Γ

′(1)
(t)(2)w

′(2) − Γ
′(1)
(2)(t)w

′(2)

D2x
′(2)

dt2
= −Γ

(2)
(t)(t) − Γ

′(2)
(t)(1)w

′(1) − Γ
′(2)
(1)(t)w

′(1)

D2x
′(3)

dt2
= 0

we see that they agree with the usual description of the centrifugal forces
and Coriolis forces as ~FCF = −m~ω × (~ω × ~r) and ~FCOR = −2m~ω × ~v. The
interpretation of the factor of 2 in the Coriolis force immediately follows from
this formalism: one factor comes from the fact that the rotating reference frame’s
basis vectors are rotating w.r.t. the inertial reference frame, i.e. from the

Γ
′(x)
(t)(y) = ω and the Γ

′(y)
(t)(x) = −ω, and the other comes from the fact that the

spatial component of the e
′ν
(0), i.e. the tangent velocity of the rotating reference

frame itself, varies from point to point in the manifold, i.e. from the Γ
′(x)
(y)(t) = ω

and the Γ
′(y)
(x)(t) = −ω. This same analysis could have been performed with

a cylindrical-polar set of spatial basis vectors, however doing so would have

introduced non-zero Γνµκ and hence non-zero Γ
(γ)
(α)(β) in the non-rotating reference

frame, even though the spacetime on which the tetrad is defined is postulated to
be affine flat. We present here the derivation in terms of the Cartesian spatial
basis vectors δκ(m) because it shows how the centrifugal and Coriolis forces arise
strictly due to the relation of the rotating reference frame to the underlying
affine flat chronogeometric structure of the spacetime.

2 Geometrized Gravitational Dynamics - Gen-
eral Case

Once we have adopted a spacetime view informed by the gravitational equiva-
lence principle with the above affine structure, in order to reformulate Newton’s
gravitational theory, the question becomes: how do we treat matter’s influence
on the spacetime structure? We have already seen that the t.c.c. are not in-
variantly meaningful, as in a frame with zero 3-acceleration w.r.t. the source
matter, we expect that they roughly correspond to the 3-acceleration due to the
so-called gravitational force in traditional Newtonian gravitational theory (I say
roughly because additional considerations to follow offer an extension of, rather
than merely a reformulation of, Newton’s equations of motion in the presence of
gravitation), while in a frame that is locally co-accelerating with a test-particle,
they vanish. Once it is understood that it is actually the affine curvature of
the spacetime that is invariant for all observers, regardless of their relative 3-
accelerations or absolute 4-accelerations, we must attempt to formulate field
equations for the spacetime in terms of the non-vanishing components of the

12



affine curvature tensor, the values of which must vary differentiably and be de-
termined by the momentum-energy distribution in the spacetime. Traditional

Newtonian gravitational theory, with non-vanishing Γ
(m)
(0)(0), would lead us to

R(0)(0) = (const.)Gρ

where R(0)(0) is the (0)(0) tetrad component of the affine Ricci tensor, given
by Papapetrou-Stachel 1978 as

R(λ)(µ) = Γ
(κ)
(λ)(µ),(κ)−Γ

(κ)
(κ)(µ),(λ) +Γ

(κ)
(κ)(ρ)Γ

(ρ)
(λ)(µ)−Γ

(κ)
(λ)(ρ)Γ

(ρ)
(κ)(µ) +2Ω

(ρ)
(κ)(λ)Γ

(κ)
(ρ)(µ)

where ,(κ) = ∂(κ) := eρκ∂ρ.

Following from the fact that we have eliminated all but the Γ
(m)
(0)(0), Γ

(m)
(0)(n),

and Γ
(m)
(0)(n), we have

R(0)(0) = Γ
(m)
(0)(0),(m)

R(0)(n) = Γ
(m)
(0)(n),(m)

R(n)(0) = Γ
(m)
(n)(0),(m) + 2Ω

(ρ)
(m)(n)Γ

(m)
(ρ)(0)

R(m)(n) = 0

If we assume the spacetime to be holonomic, we have Γ
(m)
(0)(n) = Γ

(m)
(n)(0) and

also
R(n)(0) = Γ

(m)
(n)(0),(m) = R(0)(n)

Thus our theory also permits non-zero R(0)(n) and R(n)(0), which are equal for
a holonomic spacetime.

It is natural to assume that, in this case, these are given, analogous to
magnetic-type Einstein field equations G0n = 8πG

c4 T0n, by

R(0)(n) = (const.)ρV (n) = (const.)ρ v
(n)

c

where we have the same constant as in our expression for R(0)(0) and V (n) =
v(n)

c is the 3-velocity of the source-matter.

Following Stachel 2006, if we assume that the Γ
(m)
(0)(0) and the Γ

(m)
(0)(n) are

derivable from a gravitational scalar potential ϕ and gravitational vector poten-
tial ~A, respectively, namely

Γ
(m)
(0)(0) = δ(m)(j)∂(j)ϕ (5)

and

Γ
(m)
(0)(n) = δ(m)(j)[∂(j)A(n) − ∂(n)A(j)], (6)

and take const. = 4π
c2 in the field equations, they reduce to

R(0)(0) = δmj∂mjφ = ∇2ϕ =
4πGρ

c2
(7)

and
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R(0)(n) = δmj∂mjA(n) = ∇2A(n) =
4πGρv(n)

c3
(8)

with the condition ∂j(δ
mjAm) = ∇· ~A = 0, for the case of a holonomic

spacetime.

3 Electric-type Inertiogravitational Field of Earth

We now consider the magnetic-type and electric-type t.c.c. for a simplified
model of the Earth: a rigid, uniform sphere of radius R, mass M, and constant
angular velocity ~ω.

We begin with the Γ
(m)
(0)(0). If we work in spherical polar coordinates (r, θ, φ)

the invariant equation ∇2ϕ = 4πGρ
c2 gives, most generally, the following solution

for ϕ:

ϕ =
1

c2

{
GMr2

2R3 + Cr
r + Cφφ+ Cθln(cotθ + cscθ) + C if r ≤ R

−GMr + Cr
r + Cφφ+ Cθln(cotθ + cscθ) + C if r ≥ R

.
A quick calculation shows that this does indeed give ∇2ϕ = 4πGρ

c2 inside the
sphere and ∇2ϕ = 0 outside the sphere, while ∇ϕ is continuous, satisfying the
demand that ϕ be differentiable. In the interest of ease of conceptual interpre-
tation for the forthcoming calculation, we momentarily work with the solution
for ϕ in Cartesian coordinates:

ϕ =
1

c2


GMx(i)x(i)

2R3 + a(i)x
(i) + C if x(i)x(i) ≤ R2

− GM

(x(i)x(i))
1
2

+ a(i)x
(i) + C if x(i)x(i) ≥ R2

,

where the a(i) are a set of 3 constants. We now evaluate the Γ
(m)
(t)(t):

Γ
(m)
(t)(t) =


GMx(m)

R3 + a(m) if x(i)x(i) ≤ R2

GMx(m)

(x(i)x(i))
3
2

+ a(m) if x(i)x(i) ≥ R2 (9)

It is clear by inspection that the a(m) are the 3-accelerations of a frame of
reference w.r.t. the center of mass of the source mass. As 3-acceleration entails
a changing 3-velocity as a function of time, this 3-acceleration can be defined
locally along a world-line or globally, as these are the two definitions of a frame
of reference which are defined for more than one time. From the definition of
the Γ

(m)
(0)(0) = e

(m)
κ eν(0)Dνe

κ
(0) we see that they are the four-acceleration of such a

locally defined frame of reference, Aκ = eν(0)Dνe
κ
(0), projected upon the spatial

triad of covectors. Thus we may say that objects resting on the surface of a
rigid non-rotating sphere have a four-acceleration of Aκ = GM

c2R2 e
κ
(r). In order to

see what the four-force per unit mass required to achieve this four-acceleration
w.r.t. ordinary time t is, we must multiply by c2, telling us that the required
four-force per unit mass to keep an object resting on the surface of a rigid
non-rotating sphere of mass M and radius R is Fκ

m = GM
R2 e

κ
(r). In the spherical
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polar case, as well, the extra terms in ϕ correspond to a freedom to select a 3-
accelerating frame of reference, and it is merely the form of the spherical polar
Laplacian that requires the convoluted functional forms they take. If we define
a global frame of reference with all a(m) = 0 throughout the manifold, i.e. a
global frame of reference with zero three-acceleration w.r.t. the center of mass
of the source mass (Earth), Figure 6 shows the field of the local four-force per
unit mass required to be in such a frame.

If we select a global frame of reference with non-zero a(m) with no positional
dependence, we can see that the global pattern of the relative accelerations
of the four-force-free test-bodies is an invariant for any such global frame of
reference. I.e., for some point in the manifold ~X0

Γ
(m)
(t)(t)(

~X)− Γ
(m)
(t)(t)(

~X)| ~X= ~X0

is an invariant expression for any global frame of reference with non-zero
a(m) with no positional dependence, and can be visualized in this particular

case for ~X0 = ~0 with Figure 7. Mathematically, this is the statement that, by
the definition of the affine connection, the difference of two connections is a
tensor, and hence the difference of two tetrad components of the connection is
a frame invariant.

Figure 6 also serves as a visualization of the tidal forces – for if the equations
of motion, neglecting the much smaller magnetic-type effects to be examined, are

given by d2x(m)

dt2 = −Γ
(m)
(t)(t), the local variation in the magnitudes of the Γ

(m)
(t)(t), as

shown by this figure will give the relative acceleration of test-particles in the local
neighborhood of a point – the tidal forces in traditional Newtonian theory. Thus,
even if we choose a freely falling frame, there will be a deviation in spacetime
paths of test particles in the local neighborhood of the freely falling frame.
This relative acceleration can be found by considering an autoparallel curve
Xµ(λ) and a neighboring autoparallel curve connected by a separation vector
σµ(λ), where σµ(λ) is small compared to the distance scale on which the affine
connection’s variation throughout the manifold depends, so that Xµ(λ)+σµ(λ)
is also an autoparallel curve, and Wµ = dXµ

dλ as well as Nµ = Wµ + dσµ

dλ satisy
the autoparallel transport condition, i.e.

dWµ

dλ
+ ΓµγνW

γW ν = 0 (10)

, where the Γµγν is evaluated along the Xµ(λ) curve, and

dWµ

dλ
+
d2σµ

dλ2
+ Γµγν |Xµ(λ)+σµ(λ)(W

γ +
dσγ

dλ
)(W ν +

dσν

dλ
) = 0 (11)

An expression for the observed relative acceleration of the two curves can be

found by twice taking theW ν covariant directed derivative of σµ, i.e. Tµ = D2σµ

dλ2

where D
dλ = W νDν :

V µ = W νDνσ
µ =

dσµ

dλ
+ Γµγνσ

γW ν (12)

Tµ = W εDεV
µ =

dV µ

dλ
+ ΓµδεV

δW ε (13)

Substituting (12) into (13) we have
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Tµ =
d

dλ
(
dσµ

dλ
+ Γµγνσ

γW ν) + Γµδε(
dσδ

dλ
+ Γδγνσ

γW ν)W ε →

Tµ =
d2σµ

dλ2
+

d

dλ
Γµγνσ

γW ν + 2Γµγν
dσγ

dλ
W ν + ...

Γµγνσ
γ dW

ν

dλ
+ ΓµδεΓ

δ
γνσ

γW νW ε

where we have used Γµγν = Γµνγ .
dW ν

dλ can be found with equation (10), we may set d
dλΓµγν = Γµγν,εW

ε, and
d2σµ

dλ2 can be found by expanding equation (11):
First we note that, since σµ is small, we may set Γµγν |Xµ(λ)+σµ(λ) = Γµγν,εσ

ε.

Additionally, if σµ is to remain small, dσµ

dλ must also be small. Thus we may

drop terms of the form σε dσ
µ

dλ , as they are doubly small. Then, after expanding
equation (11) and using equation (10) to eliminate appropriate terms in this
expansion, we have

d2σµ

dλ2
= −2Γµγν

dσγ

dλ
W ν − Γµγν,εσ

εW γW ν

.
Substituting all these into our expression for Tµ, rearranging terms, and

renaming dummy indices we have

Tµ = (−Γµεν,γ + Γµγν,ε − ΓµγκΓκνε + ΓνδεΓ
δ
γν)W νW εσγ (14)

The expression modifying W νW εσγ , happens to be the negative of the affine
curvature tensor, so we may write

D2σµ

dλ2
= −AµνεγW νW εσγ

This is most properly called the equation of autoparallel deviation, as it is
derivable in this curved spacetime by determining the evolution of a separation
vector of two autoparallel curves in curved affine space.

The affine curvature tensor, Aκνεγ , is defined by

BµA
µ
νεγ = DεDγBν −DγDεBν

,
which is a local measure of the path-dependence of the parallel transport of

a vector, a result of the non-zero curvature of the manifold – see Figure 8. It is
again easy to visualize that there should be a path dependence of the parallel
transport of a vector in a curved manifold if we consider parallel transporting
a vector around a loop on the surface of a sphere. See Figure 9. The surface
of a sphere also affords us a convenient visual aid for why there should be an
evolution of the separation vector of two neighboring autoparallels in a curved
manifold. See Figure 10. For these visual aids, however, it should be noted that
the surface of a sphere is a manifold of constant curvature, while a spacetime in
general has curvature which varies from point to point in the manifold.

If we, for the moment, neglect the magnetic-type gravitational interactions
to be considered shortly, which, as we will see, are much smaller in magnitude,
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we can easily adapt spacetime coordinates to the above basis, in which case the
tetrad components of the connection as given by equation (9) are equal to the
coordinate components of the connection, i.e.

Γm00 =


GMx(m)

c2R3 + a(m) if x(i)x(i) ≤ R2

GMx(m)

c2(x(i)x(i))
3
2

+ a(m) if x(i)x(i) ≥ R2

In evaulating the tidal forces, we choose to continue to work in Cartesian
spatial coordinates, as we are attempting to relate local coordinates, i.e. those
around the so-called fiducial autoparallel (with σµ = 0), to global coordinates
describing the variation in the manifold of the connection. If we now consider
autoparallel curves limited to the equatorial cross-section, using equation (14)
we have

T 1 =

{
−Γ1

00,1W
0W 0σ1 + Γ1

00,1W
0W 1σ0 if x(i)x(i) ≤ R2

−Γ1
00,1W

0W 0σ1 + Γ1
00,1W

0W 1σ0 − Γ1
00,2W

0W 0σ2 + Γ1
00,2W

0W 2σ0 if x(i)x(i) ≥ R2

and

T 2 =

{
−Γ2

00,2W
0W 0σ2 + Γ2

00,2W
0W 2σ0 if x(i)x(i) ≤ R2

−Γ2
00,2W

0W 0σ2 + Γ2
00,2W

0W 2σ0 − Γ2
00,1W

0W 0σ1 + Γ1
00,2W

0W 2σ0 if x(i)x(i) ≥ R2

where , i := ∂
∂x(i) , and, remembering we have set λ = T , W 0 = 1. If we set

σ0 = 0, i.e. consider the neighboring autoparallels at the same time, and, for
simplicity, consider the points in the manifold with x(2) = 0, we have

T 1 =

{
−GMσ1

c2R3 if x(i)x(i) ≤ R2

2GMσ1

c2(x(1))3
if x(i)x(i) ≥ R2

and

T 2 =

{
−GMσ2

c2R3 if x(i)x(i) ≤ R2

− GMσ2

c2(x(1))3
if x(i)x(i) ≥ R2

or, w.r.t. ordinary time t and thereby also tidal force per unit mass,

F 1
tidal

m
=

{
−GMσ1

R3 if x(i)x(i) ≤ R2

2GMσ1

(x(1))3
if x(i)x(i) ≥ R2

and

F 2
tidal

m
=

{
−GMσ2

R3 if x(i)x(i) ≤ R2

−GMσ2

(x(1))3
if x(i)x(i) ≥ R2

The former describes the radial tidal forces, and the latter the azimuthal
tidal forces, both of which must be observed in the local neighborhood of a
freely-falling frame.

Moreover, an observer in a freely-falling frame, if defined globally, must, at
any given instant, observe a 3-acceleration of the center of mass of the source
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matter, i.e. Earth, equal to that of a test-particle at the same point of the
manifold in a globally defined frame with zero 3-acceleration w.r.t. the Earth,
and in general we expect that the relative acceleration of test-particles w.r.t.
the center of mass of the source matter is invariant under transformations into
any accelerated reference frame. This defines the closest analogy to an inertial
frame possible in a non-flat spacetime. See Figures 11 and 12.

4 Magnetic-type Inertiogravitational Field of Earth

Now we turn to evaluate ∇2 ~A = 4πGρ~v
c3 . Locally, ~v = ~ω×~r. The general solution

for ~A is now given by

~A = −Gρ
c3

∫
volume

~ω × ~r′

|~r − ~r′ |
dτ

′
+ ~f(xi) (15)

where ~f(xi) = kijx
i is a linear vector function of the Cartesian coordinates.

This integral is non-trivial, and we shall solve it following a method outlined in
Griffiths, with modifications as needed. We first start by picking some point ~r
at an angle θ w.r.t. ~ω, and then, for this point, considering a set of Cartesian

axes such that ~ω lies in the x-z plane. We then evaluate ~ω × ~r′ in terms of this

set of axes, but |~r− ~r′ | and dτ
′

in terms of spherical-polar coordinates w.r.t. this

Cartesian set of axes, and then integrate this expression in ~r′ over the volume
of the sphere. We then reference the result to the global 3-coordinate system in
which we have situated the rotating sphere.

In terms of the Cartesian axes,

~ω×~r′ = r
′
ω[− cos θ sin θ

′
sinφ

′
x̂+(cos θ sin θ

′
cosφ

′
−sin θ cos θ

′
)ŷ+sin θsinθ

′
sinφ

′
ẑ]

.
Since dτ

′
= dr

′
r
′
dθ

′
dφ

′
, all terms contributing to ~A besides that com-

ing from − sin θ cos θ
′
ŷ are some constant multiplied by either

∫ 2π

0
sinφ

′
dφ

′
or∫ 2π

0
cosφ

′
dφ

′
, both of which evaluate to 0. Thus we have

~A(~r) = −Gρω
c3

∫ R

0

∫ π

0

∫ 2π

0

−r′
sin θ cos θ

′
r
′2 sin θ

′
dφ

′
dθ

′
dr

′

√
r′2 + r2 − 2rr′ cos θ′ ŷ

where we have used the law of cosines to find |~r− ~r′ | and dropped the ~f(xi)
for the time being.

After evaluating the φ
′

and θ
′

limits, we have

~A(~r) =
2πGρω sin θ

c3

∫ R

0

r
′3f(r

′
)dr

′
ŷ

where

f(r
′
) =

{
2r

′

3r2 if r
′ ≤ r

2r
3r′2

if r
′ ≥ r
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This gives

~A(r, θ, φ) =
1

c3

{
2πGρω sin θ(5R2r−3r3)

15 ŷ if r ≤ R
4πGR5ρω sin θ

15r2 ŷ if r ≥ R

By inspection, it is clear that our locally defined Cartesian coordinate system
is related to the global, spherical polar coordinate system in which we have
situated this rotating sphere in such a way that for every choice of ~r, φ̂ = −ŷ.

Thus, we finally have

~A(r, θ, φ) =
1

c3

{
− 2πGρω sin θ(5R2r−3r3)

15 φ̂ if r ≤ R
− 4πGR5ρω sin θ

15r2 φ̂ if r ≥ R

or, if we convert to cylindrical coordinates (r, φ, z) w/ the z = 0 plane the
equatorial plane,

~A(r, φ, z) =
1

c3

−
GMωr[5R2−3(r2+z2)]

10R3 φ̂ if r2 + z2 ≤ R2

− GMR2ωr

5(r2+z2)
3
2
φ̂ if r2 + z2 ≥ R2 (16)

Rather than figure out what functional forms may be added to the above
solution for ~A that satisfy the Laplacian in cylindrical coordinates, we consider
equations (6) and (15) directly and consider how the case where we permit all
kijto be non-zero, which we shall call the primed case, compares to the case in

which we require all kij to be zero, thereby forcing ~A to be given by equation
(16). It trivially follows that

Γ
′(j)
(0)(i) = Γ

(j)
(0)(i) + (kij − kji)

.
We see in this simple Cartesian form that the freedom of adding functions

fn in the generalized coordinates to the components of ~A, An, which satisy
∇2fn(qi) = 0 corresponds to a freedom to choose, at any given point of the
manifold, a rotating coordinate system. In order to first analyze the simplest

case, we therefore choose to examine the Γ
(j)
(0)(i) in a non-rotating frame, for

which we use equations (6) and (16).
It follows that

Γ
(φ)
(t)(r) = −Γ

(r)
(t)(φ) =

1

c2


GMω(5R2−3z2−9r2)

10R3 if r2 + z2 ≤ R2

GMR2ω(z2−2r2)

5(r2+z2)
5
2

if r2 + z2 ≥ R2 (17)

Γ
(z)
(t)(φ) = −Γ

(φ)
(t)(z) =

1

c2

{
3GMωrz

5R3 if r2 + z2 ≤ R2

3GMR2ωrz

5(r2+z2)
5
2

if r2 + z2 ≥ R2 (18)

Γ
(z)
(t)(r) = −Γ

(r)
(t)(z) = 0 (19)

If we assume the spacetime to be holonomic, then it follows from equation

(4) that Γ
(j)
(i)(0) = Γ

(j)
(0)(i) for r, z, φ.

The Γ
(j)
(0)(i), then, represent a rotation of the spatial basis vectors. By visual

inspection, it is clear that positive Γ
(φ)
(t)(r) represents local rotation about the
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positive z axis, by the traditional right-hand-rule convention, while positive

Γ
(z)
(t)(φ) represents local rotation about the positive r axis. Since infinitesimal

rotations commute, we make take the net rotation rate from the Γ
(z)
(t)(φ) and

Γ
(φ)
(t)(r) as a rotation rate about an axis in the local r-z plane, with the magnitude

and direction of the rotation rate being determined by treating Γ
(z)
(t)(φ) and Γ

(φ)
(t)(r)

as r and z components, respectively, of the angular velocity vector describing
the local rotation of the space. Figure 13 shows precisely this for the Earth,
with the shade of the arrows representing the relative rate of rotation.

The equations of motion for such a frame,

D2x(r)

dt2
= −Γ

(r)
(t)(t) − Γ

(r)
(t)(φ)w

(φ) − Γ
(r)
(φ)(t)w

(φ)

D2x(φ)

dt2
= −Γ

(φ)
(t)(r)w

(r) − Γ
(φ)
(t)(z)w

(z) − Γ
(φ)
(z)(t)w

(z)

D2x(z)

dt2
= −Γ

(z)
(t)(t) − Γ

(z)
(t)(φ)w

(φ) − Γ
(z)
(φ)(t)w

(φ)

, show that if we regard Figure 12 as representing a magnetic-type field, then,
in this frame, we should expect to see what could be described as a magnetic-

type force of the form ~F = m~v × ~Bgravitational. Since we have Γ
(j)
(i)(0) = Γ

(j)
(0)(i),

the effective magnetic-type gravitational field is given by twice the magnitude

of the Γ
(j)
(0)(i) given by equations (17),(18), and (19). Qualitatively by visual

inspection, we should expect that any particle freely falling should always track
west ( (−r̂spherical) × ~Bgravitational is always in the −φ̂). This motion can
be most properly understood geometrically and conceptually as the moving
matter resulting in the local dragging or twisting of the inertial frames, i.e. the
spacetime, and the moving particle merely tracing the local orientation of the
space in the chronologically prior hypersurface of the spacetime, just as a moving
particle in an absolutely rotating frame in a flat, holonomic spacetime merely
traces the chronologically prior local orientation of a spatial hypersurface of the
4-d spacetime as described by the Coriolis force. In the above case of equatorial
free-fall in a non-rotating frame, it may be conceptually helpful to think of the
particle as tracking towards where the point on the surface of the Earth towards
which it is falling was a moment prior, although it should be remembered that
the rotating matter causes the rotation of the spatial basis vectors everywhere
in the spacetime, as given by equations (17), (18), and (19), and not merely in
the region of the spacetime in which the matter is rotating, and further that the
azimuthal motion will then also result in a small force directed radially outward.
A four-force-free observer at any point in the spacetime would observe their local
frame of reference rotating by the amounts given by equations (17), (18), and
(19) with respect to the background of stars.

Now, we interpret physically c as the speed of light, assigning it a numerical
value of c = 2.99 × 108m/s, in order to use equations (17), (18), and (19) as
a near-field, low velocity description of the frame dragging of general relativ-
ity. In general and special relativity, the speed of light, or more generally, the
fundamental velocity of special relativity, is by construction the fundamental
conversion factor between space and time, tying together all reference frames
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with this constant of nature. Thus, if we would like to use the theory pre-
sented here as a limit of general relativity, we must use this numerical value.
Using this value, we evaluate equation (17) at r = R and z = 0, i.e. the equa-

tor, and find a value of Γ
(φ)
(t)(r) = −126.4 mas / yr. To evaluate the effective

magnetic-type gravitational field, we must multiply by 2 to account for the

equal Γ
(φ)
(r)(t). In terms of s−1 and thereby also acceleration per velocity, this is

~Bgravitational = −3.895× 10−14s−1. Thus it is unlikely that the magnetic-type
forces acting on freely falling test-particles will themselves be detectable directly
in the case of Earth.

It certainly may be objected that using a numerical value for the speed of
light as our spacetime conversion factor incorporates insights from the special
theory, when the expressed intent of this paper was to logically separate special
relativity from the gravitational equivalence principle. It is true that we now
know that the special theory must be incorporated into any general-relativistic
view of spacetime, and the speed of light is the appropriate physical interpreta-
tion. This, however, does not invalidate the consideration that the gravitational
equivalence principle being logically independent of any insights of the special
theory of relativity allows us to formulate a non-flat affine Newtonian space-
time, which incorporates some conversion factor c to make commensurate units,
and then allows one conceptually to formulate the invariant inertial tenden-
cies of matter in terms of the only curvature tensor expressible in terms of the
stress-energy tensor. Thus, this model of gravitation, including the functional

dependencies of the Γ
(m)
(0)(0) and Γ

(m)
(0)(n) contained therein, serves as a valid start-

ing point for the general theory in the near-field, low-velocity regime, even if
we turn to the general theory itself to interpret this conversion factor physically
and assign it a numerical value. History leaves us only to speculate how a New-
tonian thinker equipped with the mathematical tool of the affine connection
would actually interpret the conversion factor c, given that the idea of the affine
connection was developed after the conception of the special theory of relativity,
and thus was unavailable to Newtonian chronometers.

We now turn to analyze eqautions (17), (18), and (19) in a frame of reference
which is rotating at constant Ω relative to the non-rotating frame in which the
sphere is rotating at ω, about the axis of rotation of the sphere itself. We can
relate this rotating frame of reference to a Cartesian spatial basis by setting the
axis of rotation of the sphere and the rotating frame as eν(3). Then, the Cartesian
spatial basis vectors of the rotating frame are related to the non-rotating frame
discussed above in the same way as the rotating frame of reference discussed in
the introduction was related to the globally flat affine spacetime:

e
′ν
(0) = eν(0) +

~Ω

c
× ~r = eν(0) +

Ωx(1)

c
eν(2) −

Ωx(2)

c
eν(1)

, where ~r = x(m)eν(m) and eν(m) = δν(m),

e
′ν
(1) = cos

ΩT

c
eν(1) + sin

ΩT

c
eν(2)

e
′ν
(2) = −sinΩT

c
eν(1) + cos

ΩT

c
eν(2)

e
′ν
(3) = eν(3)
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e
′(1)
ν = cos

ΩT

c
e(1)
ν + sin

ΩT

c
e(2)
ν

e
′(2)
ν = −sinΩT

c
e(1)
ν + cos

ΩT

c
e(2)
ν

e
′(3)
ν = e(3)

ν

It follows that

Γ
′(1)
(0)(0) = −Ω2

c2
(x(1)cos

ΩT

c
+x(2)sin

ΩT

c
)+

Ω

c

(
x(1)cos

ΩT

c
(Γ

(1)
(0)(2)+Γ

(1)
(2)(0))−x

(2)sin
ΩT

c
(Γ

(2)
(0)(1)+Γ

(2)
(1)(0))

)
...

+cos
ΩT

c
Γ

(1)
(0)(0) + sin

ΩT

c
Γ

(2)
(0)(0) →

Γ
′(1)
(0)(0) =

(
−Ω2

c2
+

Ω

c
(Γ

(1)
(0)(2)+Γ

(1)
(2)(0))

)
x

′(1)+cos
ΩT

c
Γ

(1)
(0)(0)+sin

ΩT

c
Γ

(2)
(0)(0) (20)

,

Γ
′(2)
(0)(0) = −Ω2

c2
(−x(1)sin

ΩT

c
+x(2)cos

ΩT

c
)−Ω

c

(
−x(1)sin

ΩT

c
(Γ

(1)
(0)(2)+Γ

(1)
(2)(0))−x

(2)cos
ΩT

c
(Γ

(2)
(0)(1)+Γ

(2)
(0)(1))

)
...

−sinΩT

c
Γ

(1)
(0)(0) + cos

ΩT

c
Γ

(2)
(0)(0) →

Γ
′(2)
(0)(0) =

(
−Ω2

c2
−Ω

c
(Γ

(2)
(0)(1)+Γ

(2)
(1)(0))

)
x

′(1)−sinΩT

c
Γ

(1)
(0)(0)+cos

ΩT

c
Γ

(2)
(0)(0) (21)

.
Noting that Γ

′(r)
(0)(0)e

′µ
(r) = Γ

′(1)
(0)(0)e

′µ
(1) + Γ

′(2)
(0)(0)e

′µ
(2), where r is once again the

cylindrical-polar radial coordinate/basis vector, using equations (12) and (13),
we have

Γ
′(r)
(0)(0)e

′µ
(r) =

(
− Ω2

c2
+

Ω

c
(Γ

(1)
(0)(2) + Γ

(1)
(2)(0))

)
(x

′(1)e
′µ
(1) + x

′(2)e
′µ
(2)) + ...

Γ
(1)
(0)(0)(e

′µ
(1)cos

ΩT

c
− e

′µ
(2)sin

ΩT

c
) + Γ

(2)
(0)(0)(e

′µ
(1)sin

ΩT

c
+ e

′µ
(2)cos

ΩT

c
)→

Γ
′(r)
(0)(0)e

′µ
(r) =

(
− Ω2

c2
+

Ω

c
(Γ

(1)
(0)(2) + Γ

(1)
(2)(0))

)
(x

′(1)e
′µ
(1) + x

′(2)e
′µ
(2)) + ...

Γ
(1)
(0)(0)e

µ
(1) + Γ

(2)
(0)(0)e

µ
(2) →

Γ
′(r)
(0)(0)e

′µ
(r) =

[(
− Ω2

c2
+

Ω

c
(Γ

(1)
(0)(2) + Γ

(1)
(2)(0))

)
r + Γ

(r)
(0)(0)

]
e
′µ
(r) →

Γ
′(r)
(t)(t) = −Ω2r + Ωr(Γ

(r)
(t)(φ) + Γ

(r)
(φ)(t)) + Γ

(r)
(t)(t) (22)
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The first term is the orginary centrifugal force, the second the magnetic-type
interaction from being in the rotated frame of reference, giving v(φ) = Ωr, and
the third the electric-type interaction from the non-rotating frame of reference.

It is clear that because Γ
(φ)
(t)(t) = 0, being in a rotating reference frame does

not by itself imply radial velocity (hence no azimuthal magnetic-type gravita-
tional deflection from this alone), and the centrifugal force is purely radial, that

Γ
′(φ)
(t)(t) = 0.

We now evaluate the Coriolis-type t.c.c. in this rotating frame of reference:

Γ
′(1)
(0)(2) = Γ

′(1)
(2)(0) = Γ

(1)
(0)(2) −

Ω

c
→

Γ
′(r)
(t)(φ) = Γ

′(r)
(φ)(t) = Γ

(r)
(t)(φ) − Ω

,

Γ
′(2)
(0)(1) = Γ

′(2)
(1)(0) = Γ

(2)
(0)(1) +

Ω

c
→

Γ
′(φ)
(t)(r) = Γ

′(φ)
(r)(t) = Γ

(φ)
(t)(r) + Ω

.
We are justified in equating Γ

′(2)
(0)(1) with Γ

′(φ)
(0)(r) and Γ

′(1)
(0)(2) with Γ

′(r)
(0)(φ) be-

cause in each case, the two rotating spatial vectors have the same relative ori-
entation in the manifold, and the two sets differ from each other only by a
(spatially) postionally dependent phase.

We are justified in equating Γ
′(2)
(1)(0) with Γ

′(φ)
(r)(0) and Γ

′(1)
(2)(0) with Γ

′(r)
(φ)(0) by

similar logic: e
′µ
(1) and e

′µ
(2) have the same relative orientation as e

′µ
(r) and e

′µ
(φ),

and e
′µ
(1) and e

′µ
(2) take on all possible directions in the (1)-(2) 2-hypersurface,

since they are rotating w.r.t. T, just as do e
′µ
(r) and e

′µ
(φ). Thus it must be that

Γ
′(2)
(1)(0) = Γ

′(φ)
(r)(0) and Γ

′(1)
(2)(0) = Γ

′(r)
(φ)(0).

If we set Ω = ω, looking at equations (17) and (22), we can see that objects
resting on the Earth between the latitudes of 54.7o N and 54.7o S (the latitudes
at which z2 = 2r2) will have a decrease in the centrifugal force per unit mass

on the order of 2Γ
(φ)
(t)(r)|r=R,z=0ΩERE = 5× 10−12 ms−2 and those above 54.7o

N or below 54.7o S will have an increase in the centrifugal force on the order

of 2Γ
(φ)
(t)(r)|r=R,z=0ΩE

RE
2 = 2× 10−12 ms−2, while the centrifugal force per unit

mass itself is on the order of f ∗(ΩE)2RE = f ∗0.068 ms−2 where f is the fraction
of Earth’s radius the point on the surface is from the axis of rotation. Equations
(17) and (22) can be used to evaluate the exact predicted modification of the
local gravitational field at the surface of the surface from this simplified model
of Earth, but, as we have shown, the magnetic-type modification is very small
compared to the ordinary centrifugal force.

Equations (17) and (22) can also be used to predict a splitting of stable
circular orbital radii in the equatorial plane of a rotating sphere depending on
whether the orbit is in the same direction or counter to the direction of sphere’s
rotation, analogous to the Zeeman effect.

23



In the equatorial plane, Equations (17) and (22) give

Γ
′(r)
(t)(t) = −Ω2r + Ωr

4GMR2ω

5c2r3
+
GM

r2
→

Γ
′(r)
(t)(t) = −Ω2r +

GM

r2
(1 +

4ΩωR2

5c2
)

The radius of stable circular orbit is such that, for a given Ω, Γ
′(r)
(t)(t) = 0:

r = (
GM

Ω2
)

1
3 (1 +

4ΩωR2

5c2
)

1
3

(GMΩ2 )
1
3 is the stable orbital radius neglecting magnetic effects, which we will

now call r0.
If we call the dimensionless 4ΩωR2

5c2 = u a dummy variable, we can Taylor
expand our expression for r, giving

r ≈ r0
1

3
(1 + u)−

2
3 |u=0u =

r0 ∗ u
3

Since the splitting of stable circular orbital radii occurs when we consider Ω→
±Ω, we send u→ ±u and take ∆r as r(+u)− r(−u), giving

∆r ≈ 2

3
u ∗ r0 →

∆r ≈ 8ΩωR2

15c2
r0

In the case of Earth, the magnitude of the splitting at the orbital radius of
r = 2RE is

∆r = 9.84× 10−5m = 98.4µm

We should expect that non-circular and non-equatorial orbits are also modified
by the frame-dragging effects.

5 Gravity Probe B

We now use the equations developed in the previous section –(17), (18), and
(19) –to predict the amount of rotation Gravity Probe B should have under-
gone under just the considerations of this paper. Gravity Probe B (GP-B) was
a gyroscope launched by NASA into an approximately circular orbit at an incli-
nation of 90.007o, i.e. orbiting from rotational pole to rotational pole, designed
to measure the rotation the gyroscope would undergo due to the geodetic ef-
fect and due to the frame-dragging effect. In such an orbit, the symmetry of
the frame-dragging effect means that the only net rotation the gyroscope would

undergo would be due to the Γ
(φ)
(t)(r), given by equation (17). We can make

an approximation for the amount of rotation the gyroscope should undergo by
treating the orbit as perfectly circular, with radius ro with an inclination of
exactly 90o. Equation (17) then becomes

Γ
(φ)
(t)(r) =

GMR2ω(z2 − 2r2)

5r5
oc

2
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Parameterized in terms of angle w.r.t. the axis of rotation θ, i.e. z = ro cos θ
and r = ro sin θ, this becomes

Γ
(φ)
(t)(r)(θ) =

GMR2ω

5r3
oc

2
(cos2 θ − 2 sin2 θ)

,
which takes on an average value over the orbit of

< Γ
(φ)
(t)(r) >= −GMR2ω

10r3
oc

2

According to NASA’s Earth Fact Sheet, Earth has a mean volumetric radius
of R = 6371 km and a total mass of M = 5.972 x 1024 kg. According to the
National Space Science Data Center, GP-B had an apogee of ha = 645 km
and a perigee of hp = 641 km (both as measured from the Earth’s surface),
and so can be ascribed a mean orbital radius to be used in our calculation of
ro = R+

ha+hp
2 = 7014 km. Taking Earth’s angular velocity of rotation to be 2π

radians divided into a sidereal day –23 hours, 56 minutes, and 4.091 seconds (5)

–, this gives an average rotation of < Γ
(φ)
(t)(r) >= −3.024 x 10−15 rad/s = −24.9

mas/year, i.e. 24.9 mas/year in the direction opposite Earth’s rotation.
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6 Concluding Remarks

We have seen that we can develop much of the conceptual and mathematical
framework neccessary for arriving at a meaningful understanding of the gen-
eral theory of relativity without ever introducing the concepts of relativity of
simultaneity, time dilation, length contraction, or, more generally, a flat, locally
Minkowskian spacetime, which offer their own unique learning challenges. This
conceptual and mathematical framework is precisely what is neccessary and suf-
ficient for understanding the gravitational equivalence principle and formulating
equations of motion in a curved, although Newtonian, spacetime. Thus peda-
gogically, it is advantageous to develop these two sets of concepts separately
– as they are much easier to understand in this way – and then consider the
consequences of requiring that the postulates of special relativity apply to the
tangent spaces of the manifold considered here.

This model of gravitation also serves as a valid near-field, low velocity limit
and starting point for an approximation scheme of the general theory, owing to
the logical independence of the gravitational equivalence principle and Lorentz
invariance, although of course they must both be integrated into a general rela-
tivitistic description of spacetime. Indeed this is what allows us to interpret our
spacetime conversion factor c as the speed of light in order to use this spacetime
as a near-field approximation of the general theory of relativity. However – at
the risk of being redundant and in the interest of stressing the conceptual im-
portance of this point – these two considerations inform our view of the nature
of space and time independently of one another.

Potential further work includes mathematically rigorously comparing the
t.c.c. derivable from the Kerr metric to the non-metric t.c.c. presented here
and formulating expressions for the tetrad components of the affine curvature
tensor and of the equation of autoparallel deviation given the magnetic-type
t.c.c.
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Figure 1: The same autoparallel curve has constant components under one coor-
dinatization of the sphere (left) but non-constant components under a rotation
of the original coordinatization of the sphere (right)
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Figure 2: The above three diagrams show three possible inertial world-lines of
force-free test particles and their 4-velocities which define autoparallels in a glob-
ally flat affine space. The surfaces represent spatial hypersurfaces T = const.,
compressed to two dimensions, and the red arrows are the spatial components of
the 4-velocities. The three diagrams can also be thought of as representing the
same inertial world-line and 4-velocities under an inertial change of coordinates
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Figure 3: Newton’s Second Law, a = F
m , states that a particle’s worldline

deviates from affine-flat autoparallel transport when subjected to a net force
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Figure 4: A coordinitization of a 4-space. The axis specifiy the x(3) coordi-
natization is not shown in order to visualize the temporal character of a given
coordinatization. This coordinization can extend over the entirety of the man-
ifold, or characterize the tangent space of a given point or set of points of the
manifold
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Figure 5: A specification of a tetrad field, without the eν(3) field shown to vi-
sualize the temporal character of the frame of reference being defined by such
a field. The surfaces represent spatial hypersurfaces compressed to two dimen-
sions. Such a tetrad field can be specified over the entirety of the manifold, or
over the tangent space of a given point or set of points of the manifold. While
this particular tetrad field defines a uniformly translating frame of reference,
the eν(0) field can be non-constant, which would allow for accelerating or rotat-
ing reference frames, and the eν(i) field can be non-constant, e.g. for a spherical
polar spatial basis.
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Figure 6: The green segment represents Γ
(2)
(0)(1), while the red segment represents

Γ
(1)
(0)(2). Clearly Γ

(2)
(0)(1) = −Γ

(1)
(0)(2) implies a rotation of eν(1) and eν(2).
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Figure 7: Cross-section of field showing local four-force per unit mass required to
keep objects in a globally defined frame of reference with zero three-acceleration
w.r.t. the sphere, i.e. with all a(m) = 0
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Figure 8: The path dependence of the parallel transport of a vector in a in-
finitesimal loop depends on the local value of the affine curvature tensor in the
manifold
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Figure 9: Visual demonstration of the change in a vector from parallel trans-
porting it around a closed path on the surface of a sphere, showing the path
dependence of the parallel transport of a vector in non-flat manifold
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Figure 10: Evolution of a separation vector of two autoparallels on the surface
of a sphere, which is independent of the coordinatization of the surface of the
sphere
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Figure 11: World-lines of three closely space four-force free test particles starting
at rest in the spacetime modified by a uniform, rigid sphere, which has been
compressed into the circle which is the intersection of the sphere with any plane
containing the projection of the particles’ worldlines onto the hypersurfaces, in a
globally defined frame of reference with zero three-acceleration w.r.t. the center
of mass of the sphere
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Figure 12: The worldlines of Figure 10 in a globally defined frame of reference
with a constant three-acceleration throughout the manifold such that it is locally
coaccelerating with the middle test particle. The center of mass of the source
matter (the sphere) has the negative of this three-acceleration, and the time
evolution of the separation vector of the autoparallels is the same as in Figure
10. This defines the closest analogy possible to a Newtonian inertial frame in a
non-flat Newtonian spacetime
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Figure 13: Cross-section of field representing local rotation of the space caused
by the rotating source matter in a non-rotating frame, with the direction of the
vector indicating the direction of the rotation by the traditional right-hand rule,
and the shading of the vector indicating the magnitude of the rotation. The
equations of motion tell us we may regard this figure as an effective gravitational
“magnetic-field“
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